
The Naval Architect January 201924

Reports on Computer-Aided Ship
Design (CASD) software in this
journal tend to lead to a waterfall

of the latest features and gadgets of a
particular software package, I have also
been guilty of this in the past, and I will be
in the future. However, in this article I take
a bit of a different stance, by focussing on
user-friendliness of software in practice.
The first issue to address is software features
which are assumedly added to enhance
user-friendliness, but are without added
value in the daily use of the software.

An example of such a feature was the
introduction of animated characters
named Clippy, Bob and Rover, in the
Operating System and application software
of a well-known software house. They were
introduced to function as an assistant for the
novice; however, their performance in that
respect was poor, while their appearance was
an insult to the professional. After a few years
Rover walked away, never to be heard of
again. Remarkably, each time such a feature
was introduced and discarded, it was lauded
as improvement.

This story illustrates that visual
appearance offers no added value of its own
accord, and neither does flip-flopping with
features. Although no CASD software yet
exists with cartoon character Flipper or Seal,
it is still important to distinguish between
appearance and user-friendliness, for the
first does not necessarily invoke the latter.

A second pitfall in the quest for
user-friendliness is the extension of software
with too many specific functions. Although
each function might fulfil a particular need,
their plurality makes the software as a
whole overwhelming, while the distinction
between essentials and auxiliaries is not
clear. So, the task here is to make functions
as generic as possible.

I remember a case, more than 20 years
back, where in the same week two client
requests came on our (then) new ship
hull modelling software. One was on the

automatic generation of deck camber, with
a constant ratio to the local deck’s breadth
at side, and the other concerned a feature
to generate a shear strake in the hull, at a
constant distance from the deck at the side.
We could have extended our software with
two such generation functions; however,
how many more similar, but different in
detail, generation function requests would
appear going forwards? Without careful
consideration, the software would end up
with dozens of homomorphic functions.
Looking from a distance, the two requests
are actually the same, because they both
express the desire to let the shape of a
curve of the ship hull be dependent from
another curve. A dependency editor was
implemented which allowed both features to
be addressed with the same function – and
many, many more shape dependencies with
a similar nature.

A third observation is that poor software
design cannot be repaired by fancy menus
or forms. We once had a software function
that was configured with a plain old text file.
Granted, a bit of an 80s solution, but not
harmful, because it was only intended for
internal use in the company. The structure of
the configuration data wasn’t very coherent

either, but presented no problem for the
same reason as above. When an external
party showed interest in this function,
interactive menus were created to enter
the configuration data. Fortunately, just in
time, we realised that although the visual
appearance and the operation had changed,
the underlying poor design had not. It was
a typical example of mission creep, where
software is taken from one environment to
the other without reconsidering its design.
Our customer was therefore told to wait for
a better design to be developed.

Root cause analysis
The question to be asked is which
mechanisms have led to instances of
ill-designed software. We could blame the
system developers; however, in general,
they are expected to create what the market
requests. And the market is the common
denominator of the users – ship designers.
So, we should look at market focus.

The first issue is what I would call the
syndrome of ‘electronic availability’, that is,
the idea that because data are present inside
a computer, they can seamlessly be utilised
by other software. This idea is maintained by
colourful leaflets of CAD software vendors
that place the system in the centre, orbited
by specialised software systems which
communicate flawlessly with the core by
means of mysterious acronyms such as STEP
or IGES. In general, this is fiction, which
users appear to believe without question.

A second phenomenon is that users have
become used to the modelling methods or
modi operandi of existing software. Some
methods are so ubiquitous that people come
to believe that these are the only methods to
use. This mechanism can also be witnessed
in the case of youngsters who have grown
up with Windows’ ‘desktop’ metaphor and
its implementation in File Explorer, which

Feature 2 | CAD/CAM

CASD software sits at the centre of an ever-expanding universe of features
promising greater user-friendliness. However, according to Herbert
Koelman, lack of understanding about users’ needs means that some cause
them to get lost in space rather than find their way to the optimal design

Lost in the stars

SARC founder Herbert Koelman

NA_Jan19_24+25+26+27.indd 24 07/01/2019 09:53:52

25The Naval Architect January 2019

Fe
a

tu
re

 2

makes them really believe that digital
computers should work in this fashion, and
that no alternative exists.

This is a belief that hampers innovation.
In effect, users are willing to accept a system
as it is, working around its impracticalities.
A shining example is from some decades
back, when our company prepared stability
software for a pre-designed multihull. The
outer hulls of the ship were composed
of surfaces which were either fully flat,
or circular-conical, which struck us a bit
odd, for we had expected some kind of foil
shape instead for a better hydrodynamic
performance. Years later we came to find
out that the ship was designed with software
which was only fit for monohulls, although
additional side hulls could be modelled by
means of ‘appendages’, which were limited
to flat or conical surfaces. As such, the
shape of a real ship was adapted towards the
limitations of the applied software.

Was this a result of long-since abandoned

past behaviours? No, because today we also
see many hull shapes designed with the
popular NURBS-surface method, which is
adequate to model regions of the hull but
not the hull in its entirety. With commonly
used contemporary CASD programs,
making intersections between these regions
is fairly easy, so that is what designers tend
to do, leading to ridges and chines at the
intersection of surfaces as a side product. It
is astonishing that in 2019 our community
is aiming at large-scale reductions of
energy consumption, while we accept
bad hydrodynamics caused by improper
modelling tools.

It is my impression that these examples
hint at the root cause, which is a merry-go-
round of, on the one hand, users who have
learned to utilise what they have, so don’t
ask for fundamental improvements, and
on the other hand, system developers
who let themselves be guided by user’s
demands. Nobody is to blame for this

situation; everybody plays his or her
expected and accepted role, but the result
is suboptimal. Perhaps this vicious circle
can be broken if software developers stop
listening to their customers?

Pursuit of happiness
To be more precise, the circle may be squared
if developers stop taking the customer
literally, instead proactively envisioning
what the user really needs, or will need in the
future. Some examples of software developed
in this fashion are taken from PIAS:
•	Our hull form design method is sculpted

to the way a human reasons about the
hull, which is with 3D curves on the
hull, fixed in an orthogonal plane if
required (e.g. waterline, ordinate). 3D
surfaces are interactively created between
these user-defined curves. Obviously, a
computer program based on this method
requires many tools and features, but
regardless of its implementation and

NA_Jan19_24+25+26+27.indd 25 07/01/2019 09:53:54

visual appearance, such a program will be
fundamentally user-friendly.

• The way ship designers reason about
compartments shows a duality. It can
either be viewed from the compartment
as such, with its boundaries (or their
coordinates) as primary parameters, or
from the bulkheads and decks which
divide a ship hull into spaces. Our software
supports both views, as well as a mixture.

• SOLAS rules for probabilistic damage
stability are based on a schematic
subdivision model (by so-called ‘zones’),
which has shown to lead to confusion and
inconsistencies, because reality differs
from this approximation. Fortunately,
the theory of probabilities also allows
for a realistic subdivision model, as has
been adopted in PIAS, avoiding these
inconsistencies. Obviously, to satisfy
the occasional classification society that
insists on conventionality, a zone-based
method is also present.

• Two types of data exchange standards
are commonly applied: either canonical,
scientifically-based cathedrals of Product
Data Technology, such as STEP, or
standards that just support the transport
of shape, such as DXF, 3D PDF, X3D and

JT. The first require a steep and expensive
development path, and the second don’t
contain the constituting components and
their functional parameters. Fortunately,
there is an alternative where higher-level
product elements are exchanged, see
[2]. This concept provides a feasible and
practical tool for interfacing between
heterogeneous software products.

To generalise, user-friendliness can
be improved by looking beyond User
Interfaces, naval architectural conventions
and coincidentally available mathematical
methods. It requires a fundamental
understanding of the underlying tasks and
goals, as well as the preparedness to deviate
from convention – but not too much.

Disclaimer
I realise that some of my statements are a
bit outspoken. An earlier version of this
article was full of relaxations and exceptions;
however, in that way it became illegible. So,
I saved them to this end: This article draws
conclusions, based on general impressions
and experiences. The examples are real,
however the reference to the different classes
of persons – ship designers, software users,

software developers – are generalised,
with many positive exceptions of persons,
programs and companies.

About the author
Herbert Koelman founded SARC in 1980,
and is still engaged at SARC as director &
principal developer. Since April 2018 he
has been part time professor of Maritime
Innovative Technologies at MIWB, a
bachelor school of maritime operation,
engineering and design in the Netherlands.
SARC is the supplier of PIAS ship design and
LOCOPIAS onboard loading and stability
software, www.sarc.nl. NA

References
1. H.J. KOELMAN & B.N. VEELO.

A technical note on the geometric
representation of a ship hull form.
Computer Aided Design, 45-11, Nov.2013.
www.sciencedirect.com/science/article/
pii/S0010448513001218?via%3Dihub.

2. H.J. KOELMAN. Computer Aided
Ship Design 2030 – I Can See Clearly
Now. Proc. HIPER’17, Zevenwacht,
South-Africa, www.sarc.nl/wp-content/
uploads/2017/10/Koelman-
Hiper-2017.pdf.

The Naval Architect January 201926

Feature 2 | CAD/CAM

NA_Jan19_24+25+26+27.indd 26 07/01/2019 09:53:55

