All news Events


Multiple windage areas

Posted on October 3, 2018

For the computation of wind heeling moments, in PIAS the windage area can be given. That used to be limited to a single contour, with some maximum number of points, which was sufficient for the common use the past 25 years. However, when importing the contour shape from a CAD system that maximum can easily be exceeded. For this reason this PIAS’ module Hulldef has been extended to accommodate a wind contour with a number of sub-contours (each with a resistance coefficient), with an unlimited number of points.

Customer case: ms Ostia

Posted on September 25, 2018

Type vessel: General / Bulk cargo for inland waterways

Rule dimensions:

  • L = 110,00 m
  • B = 10,46 m
  • D = 3,2 m
  • T = 3,2 m

Delivery: Lines plan for a single screw inland waterway vessel.

For Shipbuilding Solutions our engineers performed the lines plan design for a general cargo vessel built for the Dutch inland waterways. They started off with a general arrangement plan and made a unique design for the hull form. Besides the hull form design, they also have faired the vessel with Fairway to optimize the building process.

After designing the vessel there also have been made some Rhine container calculations with PIAS.


New setting “Righting levers denominator” in damage stability

Posted on July 31, 2018

Righting (and heeling) levers of stability are determined by dividing the righting (or heeling) moment by the ship’s displacement. In intact condition, the displacement to choose for that division is unambiguously that of the loading condition under consideration. In damage stability, the choice is not that obvious. However, the standard suggested by the relevant regulations has conventionally been “Constant displacement”, so that has always been the standard choice in PIAS. For some time now an alternative choice is also available — as presented in “MSC.1/Circ.1461, guidelines for verification of damage stability requirements for tankers” and “IACS 110 Guideline for Scope of Damage Stability Verification on new oil tankers, chemical tankers and gas carriers” — i.e. “Intact displacement minus liquid cargo loss”. The choice between these two alternatives is now available as a setting in PIAS, please consult the manual for more details.

SARC delivers on-board loading computer software for dry bulk ships Arklow

Posted on July 3, 2018

SARC has successfully delivered the on-board loading computer software for the new cargo vessel Arklow Villa (YN 730). This is the last ship in a series of ten 5,150 DWT traders that SARC has fitted out at Royal Bodewes Shipyard to Bureau Veritas class standards. They are all owned by Arklow Shipping and are being operated and managed by Arklow Shipping Netherlands. The first vessel in the series was be delivered in October 2015.

Bodewes & SARC
This is not for the first time that Bodewes has ordered the on-board loading computer at SARC. Other recent projects like the NB 803 Coralius; a unique LNG flex tanker that was nominated for the Next Generation Ship Award at Norshipping 2015 is also equipped with LOCOPIAS. At Bodewes they are using our PIAS software to calculate the stability of their vessels. The advantage of this is that SARC can use their PIAS-files for the base of LOCOPIAS, so there is no extra costs for input of ship data and the same files are used for the stability booklets.

The launch of the Arklow Villa has been filmed and uploaded to YouTube.

Stability criteria with PIAS

Posted on June 19, 2018

The stability required to ensure the safety of a ship, its crew and the environment is laid down in legislation. In PIAS the major part of legislation is predefined, readily available, while the underlying parametric editor facilities allows the definition of less frequently used or very specific criteria. More information about manipulating and selecting sets of stability cirteria can be found in the manual:

We have created a document to provide a coherent and clear overview of the stability criteria. This is achieved by collecting legislations set by the IMO, European Union and local authorities, and categorizes these legislations by operating area and ship type. Please send us a message if you are interested in this document including the .req files for PIAS.

Earlier this year we have informed you about the update of the stability criteria within PIAS: .

Surface export from PIAS/Fairway

Posted on May 15, 2018

Although the NURBS surface method is not very suitable for the hull design process as such, it is widely used for interfacing. So, when a hull design is to be used downstream, e.g. for engineering, CFD analyses or visualization, the Fairway hullform has to be converted to a set of NURBS surfaces.

The first step is identifying larger, four-sided areas, which is essential because its four-sidedness is an intrinsic requirement of the NURBS. The next step is to convert these surfaces to NURBS. In this paper the mathematical nitty-gritty will be omitted, the interested reader is redirected to a special conference paper on this subject.

Anyway, the result is that by some neat mathematical processing, a patchwork of NURBS surface is created with the following properties:

  • Guaranteed gap-free along common boundaries between adjacent surfaces.
  • The number of vertices of the resulting NURBS surfaces is determined automatically, and is the minimal required to achieve this gap-freeness, as well as accurate representation of the original Fairway surface.

This method is baptized LEANURBS (an acronym for Lowest Effective Amount of NURBS). Its implementation in Fairway is demonstrated by the following sequence of screen dumps, from which the first shows the ship hull in Fairway. The second is a screen dump where the hull is subdivided into four-sided regions and the last one is the IGES file in Rhino.


Herbert Koelman appointed Lector of Maritime Innovative Technologies at MIWB

Posted on May 8, 2018

Herbert Koelman, who founded SARC in 1980, has recently been appointed as Lector Maritime Innovative Technologies at the Maritime Institute Willem Barentsz (MIWB). The function of a Lector is initiating and managing applied research, as well as supporting education. This appointment is for two days a week, the other three days Koelman will remain at SARC, in software development and general management.

MIWB is an academy within NHL Stenden University of Applied Sciences, and offers BSc and MSc educations in the design and operations of ships. The research objectives of the Maritime Innovative Technologies research group are in the field of innovation in the field of maritime operations, design and production, and in particular the relationship between these three. One of the first projects envisaged will be to convert measured operational (big) data into design tools for ship design. For more information on this subject you can contact

In Lector jackets from left to right: former Lector Joop Splinter, Herbert Koelman and Lector Maritime Law Welmoed van der Velde

LOCOPIAS IMDG implementation

Posted on April 19, 2018

From January 2018 the new 38th amendment of the IMDG Code will become mandatory and to invigorate this an IMDG module has been added to LOCOPIAS.

IMDG  (International Maritime Dangerous Goods) Code is accepted as an international guideline to the safe maritime transportation or shipment of dangerous goods or hazardous materials. This (mandatory) Code has been designed to protect crew members and to prevent marine pollution.

The IMDG code extension in the LOCOPIAS container module assists in the loading of dangerous cargo by real time validation against the IMDG requirements. It presents the operator an overview of conflicts in segregation and stowage requirements. Current implemented version is amendment 38-16 (the most recent version of the code). The complete white paper can be found here.

IMDG extension in the container module of LOCOPIAS

Jan de Nul attends a probabilistic damage stability training

Posted on April 16, 2018

Last week our colleagues provided a probabilistic damage stability training in Aalst, Belgium, the home base of Jan de Nul, a leading and maritime construction company. To know more about the trainings we provide, please check the ‘Training’ page.

Jan de Nul following the probabilistic damage stability training

Verification of LOCOPIAS for EBIS

Posted on February 6, 2018

This manual is intended to explain how to verify the Loading Computer System (LCS). The LCS, in this case LOCOPIAS, must be verified at regular intervals to check the correct functioning of the loading instrument. EBIS is asking for a Class approved ship stability calculation program for on-board use and there muest be records indicating that the operational accuracy of the ships stability calculation program is tested regularly.

The manual is in English and Dutch.

← Newer posts Older posts →