
Proceedings of the TMCE 2006, April 18–22, 2006, Ljubljana, Slovenia, Edited by I. Horv´ath and J. Duhovnik
c©2006 Millpress, Rotterdam, ISBN

REFLECTIONS ON THE IMPLEMENTATION OF BOOLEAN OPERATIONS WITH
POLYHEDRAL SOLIDS

Herbert J. Koelman
SARC BV, Bussum

H.J.Koelman@sarc.nl

ABSTRACT

A practical CAD application may significantly ben-
efit from the facility to perform Boolean operations
with the modelled objects. Fortunately, the literature
provides a plurality of discussions and methods for
such operations with polyhedral solids and sculptured
solids, while also attention is paid to the possible pit-
falls of numerical incompatibilities. So the implemen-
tation of a Boolean facility seems to be a matter of
implementation rather than a matter of research. How-
ever, in the real world, situations may occur for which
the published methods offer no solution. To some ex-
tent this can be related to numerical issues, but partly
it is fundamental, especially with solids that do not
really intersect, but only touch each other. This pa-
per identifies and illustrates these problems, and for-
mulates suggestions for modifications to the solution
strategies. Furthermore, solutions for the numerical
incompatibilities are proposed, and application exam-
ples are presented. Finally, it is concluded that our pro-
posed methods provide no fundamental solution, they
are practical workarounds instead.

KEYWORDS

Boundary Representation, Boolean Operation, Polyhe-
dral solid, Solid Modelling.

1. INTRODUCTION

The activities of our company are located in the field
of ship design and naval architecture. For that pur-
pose we have been developing a dedicated set of com-
puter programs, which are marketed under the names
PIAS andFairway. It will be obvious that such de-
sign software relies heavily on the proper modelling
of the geometric model of the ship, both the exterior
and the interior. In agreement with the naval archi-
tectural tradition, initially the chosen hull shape mod-
elling method was based on cross-sectional modelling.
In a later stage of program development this sectional

model was replaced by an extended B-rep model, see
(Koelman et al., 2001). However, the most labor-
intensive and error-prone activity in the initial design
stage is not the hull modelling activity, but the mod-
elling of the interior, such as holds, tanks and other
spaces. In order to enable quick modelling our sys-
tem offered the possibility to specify only the coordi-
nates of the eight extreme corners of a box, whereafter
the program calculated the intersection between that
box and the cross sections of the hull. Because in re-
ality internal spaces can be more complex than box-
shaped ones, multiple boxes can be merged into com-
partments. In this respect the boxes are only logical
entities, the compartment is a physical one. An exam-
ple of such a sectional-based compartment model is
presented in Fig. 1. However, now that a solid model
of the hull is available, it is also possible to model the
interior in a more complete way. This could be done
with surfaces, as employed by most naval architectural
programs, but since we have a solid model of the hull
available, an implementation on the basis of solids may
also be feasible. Such an approach, which is also ap-
plied in (Lee et al., 2003), offers the following advan-
tages:

• With the conventional methods it is the responsi-
bility of the program user that the boxes do not
overlap. With the proposed method the user will
be allowed to model the boxes in a much more re-
laxed fashion; the system will deal with the over-
lapping parts.

• Enhanced representation accuracy, especially in
the curved forward and aft regions of the vessel.
Besides the fact that a more complete represen-
tation will be an aid for the program user in the
judgement of the correctness of the model, it may
also enhance the accuracy of the calculation. On
the other hand, a lack of accuracy was not a spe-
cific defect of the conventional method; with the

1

use of second-order integration schemes, a rela-
tively high accuracy could always be combined
with a modest section density.

• An implementation with solid models is to be pre-
ferred above a surface representation. With the lat-
ter it is the task of the user to specify explicitly
which surfaces must be considered as boundaries
of a space, with solids this knowledge is an intrin-
sic part of the representation.

An example of a compartment represented by a solid
which is composed as the union of elementary boxes,
is given in Fig. 2.

Figure 1 Sectional representation of cargo hold

Figure 2 Solid representation of the cargo hold of Fig. 1

2. A SURVEY OF METHODS FOR
BOOLEAN OPERATIONS

Boolean operations on solids are widely discussed in
literature. For the author it is not certain whether the

plethora of publications on this subject is a sign of
matureness, or an indication that the field is still un-
der development. Anyway, for our intended task we
need to survey the literature, although the available
space forces us to briefness. Furthermore we have not
taken standard available solid modelling kernels, such
as ACIS or Parasolid, into account. Although the use
of kernels may offer a solution with respect to the im-
plementation, they can only be used as black boxes and
offer no insight in the applied methodology. With the
focus on polyhedral solids also CSG-based methods
have not been considered.

2.1. Boolean operations on polyhedral
solids

In (Requicha, 1980) the observation was made that the
conventional Boolean set operations∩, ∪ and - are not
algebraically closed. However, the regularized inter-
section union and difference (denoted∩∗ , ∪∗ and−∗)
are closed. In (Requicha & Voelcker, 1984) the reg-
ularized Boolean set operations are further elaborated
and applied on polyhedral solids. A concise discussion
of the regularized Boolean set operations is given in
e.g. (Foley et al., 1990). In (Chiyokura, 1988) the solid
modelling systemDESIGNBASE is presented, includ-
ing a detailed discussion of its polyhedral Boolean set
capacities. WithDESIGNBASE only the∪∗ operation
is implemented, with the steps a) generating intersec-
tion lines, b) generating intersection points, c) remov-
ing the included part of one solid and d) joining the
two solids. The∩∗ and−∗ operations are related to
the∪∗ as follows:

A ∩∗
B = ¬(¬A ∪∗ ¬B) (1)

A −∗
B = ¬(¬A ∪∗

B) (2)

(where¬ denotes the negation)

In (Mäntylä, 1988) the modellerGWB ((Mäntylä & Su-
lonen, 1982)) is described, its Boolean set methods are
elaborated in (Mäntylä, 1986).GWB is founded upon
a polyhedral Boundary Representation (B-rep). Given
two solidsA andB, with bounding polyhedraA and
B, four objects can be distinguished, viz.AinB (the
part ofA within B), AoutB,BinA andBoutA. These
objects are sufficient for conventional Boolean opera-
tions, but forregularized operations four more com-
ponents must be classified, viz.AonB+ (the part ofA
which lies onB with coinciding face normals),AonB−

(with opposite face normals),BonA+ and BonA−.
The regularized Boolean combinations are computed

2 Herbert J. Koelman

by

A ∪∗
B = AoutB + BoutA + AonB+ (3)

A ∩∗
B = AinB + BinA + AonB+ (4)

A −∗
B = AoutB + ¬BinA + AonB− (5)

The set operation algorithm comprises four steps,
namely a) generate new vertices on the intersections
of A andB, b) perform the described 8-way classi-
fication ofA andB, c) connect the newly generated
vertices and d) create the result with Eqs. 3 to 5.
In (Hoffmann et al., 1987) and (Hoffmann, 1989) a
method is described which is more or less compara-
ble to DESIGNBASE andGWB. The consistency and
robustness of this method is enhanced by a particular
sequence of operations, which avoids that the same ge-
ometrical operation is performed more than once.
In practice it appeared that the Boolean set operations
are very critical to numerical round-off effects. In or-
der to avoid these pitfalls, interval arithmetic can be
applied (see e.g. (Hu et al., 1996) or (Tsuzuki & Shi-
mada, 2003)). Other variant methods have also been
published, e.g. in (Segal & Sequin, 1988), where the
objectsA and B are processed without intermediate
classifications, and in (Gardan & Perrin, 1996), where
the 3D geometric intersection algorithm is reduced to
a 2D one.

2.2. Boolean operations on sculptured
solids

When a non-polyhedral modelling method is applied,
the Boolean set operations must also be capable for
objects with a sculptured shell. The most obvious ap-
proach is to approximate the sculptured surface by a
polyhedron, and then apply a conventional polyhedral
method (see e.g. (Toriya et al., 1991)). A more ac-
curate result might be obtained by direct processing
or the curved surface representation of the shell. In
(Krishnan et al., 2001) such a system,BOOLE, is de-
scribed, with some impressive examples. Additionally,
in (Keyser et al., 2002) a descendant ofBOOLE is pre-
sented, where thanks to enhanced precision some fail-
ures ofBOOLE are avoided.

3. CHOICES, AND CONDITIONS FOR IM-
PLEMENTATION

For the implementation of Boolean set operations in
our naval architectural design system the following
conditions have been formulated:

1. Because the average naval architect is not

acquainted with detailed aspects of topology
or Boolean arithmetic, the mathematical back-
grounds and peculiarities must be hidden for the
user.

2. For practical reasons the adopted method must as
much as possible be compatible with the classes
and methods of our design system. Because our
system is based on an extended B-rep, and sup-
ports sculptured faces, the Boolean set operations
must be suitable for, or at least expandable to, non-
polyhedral solids.

3. Especially the operations on touching objects must
perform well. The reason is that the Boolean func-
tions are heavily applied for the creation of com-
partments, which are composed from user-defined
boxes (called sub-compartments in our context).
And the user has two motives to define the sub-
compartments merely touching instead of over-
lapping. The first reason is historical, the users
are trained to do so because our previous wire-
frame modelling system allowed no overlapping
sub-compartments. Secondly, if the number of
sub-compartments rises, it appears to be easier
for an average human to imagine a collection of
’nicely’ touching building blocks, than one where
they wildly overlap.

4. General requirements are robustness and process-
ing speed. However, concerning the latter aspect,
we must realize that in our domain of application
very high numbers of solids are not expected. A
typical internal layout of a ship may contain sev-
eral hundreds of internal solids, which is mod-
est compared to the more than 5000 solids of the
Bradley Fighting Vehicle, as reported in (Keyser
et al., 2002). So, in the first development stage
we have considered performance not of theprime
importance.

With the aim of step-wise development, we have cho-
sen a three-stage approach: a) a conventional poly-
hedral method, b) refinement for robustness and effi-
ciency and c) extension to pseudo-sculptured objects,
by means of polyhedral approximation. At first sight
there appears to be little fundamental difference be-
tween the various methods from subsection 2.1. Our
choice for the first development stage fell on the
method of (Mäntylä, 1988), because a lot of the em-
ployed basic classes and methods were already avail-
able in our software.

REFLECTIONS ON THE IMPLEMENTATION OF BOOLEAN OPERATIONS WITH POLYHEDRAL SOLIDS 3

Figure 3 Union of two objects

4. EXPERIENCES AND MODIFICATIONS

The initial implementation performed well on solids
which either intersect properly, or do not intersect at
all. The next test was a union operation with a cube and
another hexahedron which only touch, see Fig. 3. This
simple case failed. For convenience we have left our
sources resting for the time being, and experimented a
bit with a similar Java implementation which is avail-
able on Internet, (Bhardwaj & Malik, 1997). This im-
plementation succeeded in the case of Fig. 3, but it
failed in some other cases, for example with the ob-
ject of Fig. 4a. Once this object is intersected with a
box with a touching lower plane and an upper plane
which cuts off the objects top, a superfluous intersec-
tion plane is created in the side, which is shown as the
vertical wedge in Fig. b. So there was a problem, we
had two different implementations of, more or less, the
same method and both failed, on different points. Ob-
viously the time for superficial observations was over,
and a more in-depth study was required. The different
subjects that have been brought forward in this process
will be discussed in the next sub-sections.
Besides, a number of minor modifications have been
made. Because an implementor may benefit from our
efforts, they are included in the appendix as tips.

4.1. Reclassification of edges

The major steps of the algorithm have been summa-
rized in Sub-section 2.1. One of those steps is the clas-
sification of edges and vertices, that means to detect for
each of these elements whether they belong to the part
AinB, AoutB, BinA or BoutA. Time and again prob-
lems can be traced back to this reclassification step. It
can be derived that the reclassification scheme should
be as in Table 1.

In the reclassification process three cases can be dis-

Figure 4 A solid (a) and its intersection with a larger solid
(b)

Operation AonB+ AonB− BonA+ BonA−

∪∗ AoutB AinB BinA BinA

∩∗ AinB AoutB BoutA BoutA
−∗ AinB AoutB BoutA BoutA

Table 1 Standard reclassification table

tinguished:

• Sector-sector coincidence, that means that when a
sector of one solid coincides with a sector of the
other solid (where a sector is defined as the part
of a face between two edges in the neighbourhood
of their common vertex). This case is covered by
Table 1.

• Edge-sector coincidence. In this case an edge (E)
of one solid coincides with a sector (S) of the other
solid, but not with an edge of the other solid. This
case is rather easily covered by detecting if the two
sectors which are located on both sides of E are
situated on different sides of S. If that is the case
the solids intersect at E, otherwise they don’t.

• Edge-edge coincidence. In this case the presence
of an intersection at the coinciding edges is

4 Herbert J. Koelman

determined by an analysis of the orientation of the
sectors around the coinciding edges. If the sectors
appear in a mixed order, than the two solids
intersect at the edges, otherwise they do not inter-
sect, but only touch each other. A complicating
possibility is that two involvedsectors, each from
a different solid, may also coincide. In that case
the order cannot be determined anymore. One
should expect that Table 1 must be re-applied, but
in practice this fails. However, if Table 2 is used
instead, the whole process appears to function
well. The author has no reasonable explanation
for this discrepancy.

Operation AonB+ AonB− BonA+ BonA−

∪∗ AinB AoutB BinA BoutA
∩∗ AinB AoutB BoutA BinA

−∗ AinB AoutB BoutA BinA

Table 2 Reclassification table for edge-edge coincidence

4.2. Repairs

In the implementation of (Bhardwaj & Malik, 1997)
quite some effort has been put in a mechanism to
repair cases where it is not possible to connect newly
generated vertices. An obvious cause for such failure
is that the previous, reclassification, step of the
algorithm was imperfect; that is the same stage which
caused us most trouble. Because the reclassification
step is potentially unreliable, a repair possibility is
always welcome. For this repair algorithm the Java
source is available, but unfortunately the underlying
assumptions and methods have not been published. In
addition the authors of the program were not available
for an illumination, so we have applied the repair
mechanism without fully understanding it. Particu-
larly there is an intriguing distinction between the
treatment of 4-sided faces and that of other faces, for
the background of which we cannot even speculate.
However, it can be tracked that the repair steps are
occasionally called upon (or, to be more precise, two
of the four possible repair steps) and apparently they
help.

4.3. Geometric consistency

Multiple authors have warned for the pitfall of geo-
metric inconsistencies, and although the major burdens
have been experienced with topological issues, the nu-

merical issue also played a role in our efforts. Geomet-
ric inconsistency can be experienced with sectors that
nearly coincide. Say, we have two sectors, S and T of
different solids, and some arbitrary tolerance t. When
evaluating S against the plane through T, the sectors
are assumed to intersect if the distances of the three
vertices from S to that plane T are smaller than t. At
another stage of the algorithm a similar evaluation of T
against the plane through S is performed and in theory
both conclusions should be the same, but occasionally
the two evaluations give a different outcome. Unfortu-
nately there is no smart choice of t, either constant or
algorithmically, to prevent this inconsistent behavior.
The occurrence of this phenomenon can be detected,
because the reclassification of vertices and edges fails,
while the repairs of Sub-section 4.2 provide no solu-
tion. For these cases we have implemented a ’retry’
facility, where the reclassification of a sector is repro-
cessed, with each time a slightly different strategy. The
standard method is as described: vertices of one sec-
tor are evaluated against the plane through the vertices
of the other sector. On failure the edges of the sectors
are normalized, which results in a different position of
the end-vertices of each sector. Now these modified
vertices are evaluated against the planes. If this mech-
anism also fails, in a preprocessing step for each sector
pair, the end-vertices of each sector are explicitly pro-
jected into the plane of the other sector. This last step
makes the sectors geometrically compatible, however
at the price of a modification of the local geometry.
A second provision against geometrical inconsistency
is performed prior to the Boolean operation itself. In
this preprocessing step those vertices of one solid are
detected whichnearly coincide with an element of the
other solid. These vertices are geometrically modi-
fied, to make themfully coincide. A drawback of this
mechanism is that the geometry of the solids is slightly
modified, which may be undesirable. In our applica-
tion it may be known beforehand which solids can be
modified, and which solids must remain unchanged.
The sculptured hull for instance is polyhedralized into
many small faces, so a change in the location of a mod-
est number of vertices of the hull is not noticeable. A
compartment on the other hand can be defined as one
large single box, and modification of one of its vertices
can be perceptible. So, one solid can be declared dom-
inant over the other, and in the preprocessing step only
the vertices of the non-dominant solid are touched.

REFLECTIONS ON THE IMPLEMENTATION OF BOOLEAN OPERATIONS WITH POLYHEDRAL SOLIDS 5

4.4. Implementation details

Preprocessing and postprocessing

The Boolean operations are particularly sensitive to
anomalies in the constituting solids. In this context
with anomaly an allowed, but unnecessary and unex-
pected element is meant, for instance, two coinciding
vertices in one solid. So, in order to make the Boolean
operations more stable, in a preprocessing step the fol-
lowing anomalies are removed: coinciding vertices, 1-
or 2-sided faces, strut-edges, neighbouring faces with
face normals of opposite orientation, self-intersecting
faces and empty inner loops.
Furthermore, after the Boolean-operation itself, a cou-
ple of postprocessing operations need to be done. The
first is necessary after a union operation where one
solid is enclosed entirely in the face of the other one.
See for example Fig. 5, where in the resulting solid
the lowest face of the upper part is an internal loop
of the upper face of the lower part. Such a situation
is topologically valid, but it appears to cause trouble
at subsequent Boolean operations. For that reason the
inner loop is topologically removed by connecting it
with the outer loop.
A last postprocessing step is required to recognize
or generate the information that makes our B-repex-
tended, such as continuous curves through adjacent
edges, and their curved geometry.

Figure 5 Two constituting parts meet at an inner loop

Speed enhancement

Our implementation is equipped with a rudimentary
performance enhancing technique. Such mechanisms
are not uncommon for solid modelling systems, see
e.g. (Mäntylä & Tamminen, 1983) where a spatial cell
structure is maintained which keeps track of geomet-
ric entities of the processed solids. Such a structure
speeds up the geometric process, because it identifies
which elements are not in each other’s vicinity, so they
can a priori be left out the investigations for intersec-
tion.
We applied a much simpler technique, with the ad-
vantage that it does not need a separate data structure.
Our face and edge data structures are extended with a
’space’ structure, which stores the center and the radius
of a ball that contains the entire edge or face. Prior to
each geometrical process between faces or edges it is
checked whether their balls overlap. If that is not the
case, they cannot intersect, and the intersection process
is aborted. This mechanism seems to be working quite
efficiently, but unfortunately there has not yet been an
opportunity for quantification of the effect.

5. EXAMPLES

An example of a cargo hold which was composed
by union operations on 11 non-overlapping sub-
compartments was already presented in Fig. 2. In
Fig. 6 a side compartment of a ship is shown, modelled
as the union of non-overlapping sub-compartments,
and subsequently intersected with the faceted sculp-
tured ship hull. An example that includes the sub-
traction of a solid, which results in a through-hole, is
shown in Fig. 7. Finally an example that shows a com-
plete compartment model of a vessel is presented in
Fig. 8

6. WEAKNESSES AND UNSOLVED
PROBLEMS

Even after the discussed extensions and improvements
there are a couple of problematic areas left, which will
be discussed in the next sub-sections:

6.1. Non-polyhedral solids

Occasionally, in a ship, compartments are constructed
which have warped boundaries, as in Fig. 9, and the
software should accommodate this. At this moment
our software detects such non-plane faces, and recur-
sively triangulates them until the deviation between
the warped surface and the points of the triangle are
less than a certain tolerance (cf. (Toriya et al., 1991)).

6 Herbert J. Koelman

Figure 6 A realistic side tank

Figure 7 The forecastle of a ship

Although such a polygonal approximation is sufficient
for visualization purposes and for Boolean operations
with either properly intersecting or non-intersecting
surfaces, with touching warped surfaces there is a
problem. The reason is that two coinciding surfaces
are triangularized independently, so their triangles do
not coincide. This results in two dense triangle net-
works which are entwined in each other and generate
an enormous amount of intersections. Apart from the
question if the software works properly on such a con-
figuration, the result with many resulting void pockets
and intersection edges is undesirable.
One could consider to accommodate for solids with
generally sculptured surfaces, but for our purposes that
would be overkill. It will suffice to adapt the software
to handle bi-linear surfaces explicitly. The representa-

Figure 8 All fluid-containing compartments of a ship

tion of such a surface, and the geometric operations on
it (e.g. intersection with a line), are well described in
e.g. (Liming, 1979).

Figure 9 Compartment with warped boundary

6.2. Multishell objects

The B-rep data structure allows an object which con-
sists of multiple unconnected shells, actually there
is neither an explicit provision nor an implemented
recognition mechanism for them. So all basic opera-
tions can be applied with such multishell objects, but at
a certain stage during the Boolean operation all faces
must be assigned toAinB, AoutB, BinA or BoutA.
Because at that stage the intersection edges and the
topology of their neighbourhoods are known, each face
which is bounded by an intersection edge is assigned
accordingly. Subsequently the adjacent faces are given
the same classification, in a recursive manner so that
the neighbours will classify their neighbours and so

REFLECTIONS ON THE IMPLEMENTATION OF BOOLEAN OPERATIONS WITH POLYHEDRAL SOLIDS 7

on. But in this way a shell which is not connected to
the shell which contains the intersection edge is never
reached.
This effect can be repaired by some additional book-
keeping: a list of processed faces can be maintained,
and faces that are finally unprocessed must belong to
a distinct shell. Obviously, this shell does not inter-
sect the other solid, so it suffices to investigate whether
this shell is completely inside or completely outside
the other solid, and to classify it accordingly.
A question we have to ask in this respect is if multi-
shell objects do actually occur in our application. The
answer is positive, a first possibility is with compart-
ments which are intended to contain multiple shells,
for instance a tank containing liquid which consists of
two distinct parts that are connected by a pipe, but the
dimensions of the pipe are so small that actually mod-
elling it would be a bit overdone. Secondly, multishell
object can unintendedly be created when a complex
compartment is modelled, from the union or differ-
ence between sub-compartments, with a typical num-
ber of 10 to 20. The sub-compartments are defined
by the user in an arbitrary way, thus the definition se-
quence can lead to an intermediate solid containing
multiple shells. The fact that at a later stage another
sub-compartment will be added which unites the two
shells again, leaves unaffected that the possibility of
multiple shells must be supported. The alternative, to
burden the user with the responsibility to choose a se-
quence that will not create multiple shells, is not par-
ticularly user-friendly.

6.3. Nonmanifold topology

The applied methods are designed for solids with man-
ifold topology. For our purposes that is sufficient be-
cause the objects we aim at do not have nonmanifold
characteristics, such as more that 2 faces meeting at a
common edge. However, in the course of the composi-
tion process, unintendedly, a nonmanifold object may
occur in an intermediate step. Take again the compart-
ment of Fig. 2, which is a manifold solid. Depending
on the definition sequence of the sub-compartments an
intermediate solid could be created as in Fig. 10, where
the last two sub-compartments (which are colored pur-
ple in Fig. 2) still have to be added. But in this solid
four edges meet at a common edge, so it is not mani-
fold anymore, which hampers further processing. We
will try to tackle this problem by automatically sorting
the sub-compartments, so that each intermediate solid
will remain manifold.

Figure 10 Intermediate stage in the construction process
of the hold of Fig. 2

7. CONCLUSION

In this paper we have reported the quest for a practi-
cal implementation of Boolean set operations on solids
bounded by plane and bilinear surfaces. The job took
quite some effort, which was rather unexpected be-
cause in the literature a plurality of methods is pre-
sented and described into detail, which gave us the
impression that this particular subject is rather out-
engineered. That appeared not to be the case, there
are still many pitfalls, not always major ones, but even
a small one can make a Boolean operation to fail com-
pletely. However, in hindsight there have been a cou-
ple of indications for the non-perfectness. In a private
communication with an implementor of an extensive
modelling package he remarked that it is occasionally
necessary to give touching solids a minuscule rota-
tion in order to finish a Boolean operation successfully.
Also in (Segal & Sequin, 1988) it is mentioned that a
user is signalled if the program has difficulty to deter-
mine whether a vertex is included in a face. It is a very
weak ‘solution’, but also our system can now show the
messageIntersections with this model failed. Please
try a tiny shift of one of the bounding planes.
Anyway, with the proposed modification a workable
system emerged, although a number of items still has
to be finished or improved:

• All three operations∪∗, ∩∗ and−∗ are explicitly
included. The program could be more transparent,
and possibly more reliable, with only one imple-
mented function, in combination with relations as
in Eqs. 1.

• The explicit support for multishell objects, and

8 Herbert J. Koelman

warped faces, as discussed in Section 6.

• A quantitative analysis of the speed enhancements
of Sub-section 4.4.

• Investigate whether the users can be persuaded to
apply more fully intersecting objects, instead of
touching ones. An obstacle in this respect is that
the users are educated to a touching configura-
tion, because in the previous, wireframe-oriented,
version of the software this was the only allowed
method. To make things worse, even today the
higher performance of the wireframe model is
sometimes a reason to use this representation for
calculation intensive tasks, such as the calcula-
tion of damage stability. So either the wireframe
method must be modified so that it also accommo-
dates intersecting sub-compartments, or the user
must maintain two alternative sub-compartment
configurations for each compartment.

And of course the last couple of bugs have to be re-
moved from our software. Surely they are present, we
only don’t know where yet.

Appendix A. SOURCE CODE MODIFICA-
TIONS

During the development process a couple of improve-
ments on published algorithms have been made, which
are, for the record, discussed in this appendix.

Appendix A.1. Insertion of null edges

On page 292 of (Mäntylä, 1988) program 15.11 is
listed, which handles the insertion of null edges. It
determines where to insert new halfedges, and distin-
guishes between the cases that new halfedges must
be inserted between two distinct existing halfedges,
or only to one existing halfedge. The first case
is processed by functionsepar1, the second by
separ2. However, the case that inboth solids A and
B halfedges must be inserted to one existing halfedge
is not covered. The next modification will do:

if (ha1 == ha2)
{

separ2(ha1,0)
if (hb1 == hb2) then
separ2(hb1,1)

else
separ1(hb1,hb2,1)

} else if(hb1 == hb2)
{

separ2(hb1,1)
separ1(ha2,ha1,0)

}
else
{

separ1(ha2, ha1, 0)
separ1(hb1, hb2, 1)

}

Furthermore the implementation ofsepar2 consists
of one call tosepar1. This appeared to be insuffi-
cient because multiple nulledges may be connected to
a single vertex. In the subsequent joining process ar-
bitrary nulledges can be connected, which causes the
vertices to be connected to appear in distinct faces. But
situated in distinct faces these vertices cannot be con-
nected anymore. The phenomena is tackled by placing
each strut edge in a private (internal) ring:

void separ2(he, type)
HalfEdge *he;
int type;
{

HalfEdge *he2;
he2 = he->prv;
lmev(he,he,++maxv,

he->vtx->vcoord[0],
he->vtx->vcoord[1],
he->vtx->vcoord[2]);

lmev(he,he,++maxv,
he->vtx->vcoord[0],
he->vtx->vcoord[1],
he->vtx->vcoord[2]);

he2 = he2->nxt;
lkemr(he2,mate(he2));
if(type==0)
sonea[nedgea++] = he->edg

else
soneb[nedgeb++] = he->edg

}

Appendix A.2. Multiple intersecting sec-
tors

The same nulledge insertion function traverses the list
of sectors until two intersecting ones are found. The
implicit mechanism is that two subsequent sectors of
the list form a matching pair. With more than two
sectors in the list this does not necessarily have to be
the case; the solution is to treat the list as a closed
loop, and repetitively scan it until all matching pairs
are found.

REFLECTIONS ON THE IMPLEMENTATION OF BOOLEAN OPERATIONS WITH POLYHEDRAL SOLIDS 9

Appendix A.3. Edge-edge coincidence

In (Mäntylä, 1986),§6.2.2.2, the case of coinciding
edges is discussed. Additional to the basic method
a provision must be made for the recognition of on-
edges. In a first implementation the identifierss1a
etc. (from the structurensectors on page 279 of
(Mäntylä, 1988)) have been utilized for this purpose,
but due to the fact that these identifiers may have been
redefined in the previous sector-sector processing part,
they are not suitable. Instead we use additional iden-
tifiers which save the status of the initial edge-sector
comparison of program 15.7.
Furthermore one has to bear in mind that on-edges can
either indicate that the edges do actually coincide, as in
Fig. 11.a, or that the edges share only a common line
as indicated in Fig. 11.b.

Figure 11 Two cases of coinciding edges

Appendix A.4. Loop gluing

On page 212 of (Mäntylä, 1988) the loop gluing algo-
rithm is listed. In one particular case an outer loop with
a strut appeared, combined with an inner loop with
two coinciding vertices. This was a fail-case, so as
a preprocessing step these anomalies will be removed.
Furthermore, a degenerated face (a face with only two
edges) needs extra attention. This is implemented in
the procedure as partially listed below:

void loopglue(fac)

{
int degenerated_face;
.............
degenerated_face =
h1->nxt == mate(h1);

while(h1->nxt != h2)
{

if (degenerated_face == 1)
break;

}
if (degenerated_face == 0)
lkef(mate(h1),h1);

}

REFERENCES
Bhardwaj, A. & Malik, I. (1997).Java Applet for Con-

structive Solid Geometry. Technical report, Computer
Science Department, Cornell University.

Chiyokura, H. (1988). Solid Modelling with Designbase.
Addison Wesley.

Foley, J. D., van Dam, A., Feiner, S. K., & Hughes, J. F.
(1990). Computer Graphics: Principles and Practice.
Reading, MA: Addison-Wesley. second edition.

Gardan, Y. & Perrin, E. (1996). An algorithm reducing 3d
boolean operations to a 2d problem: concepts and re-
sults. Computer Aided Design, 28(4), pp. 277–287.

Hoffmann, C. (1989). Geometric and Solid Modeling. San
Mateo, CA: Morgan-Kaufmann.

Hoffmann, C. M., Hopcroft, J. E., & Karasick, M. T. (1987).
Robust Set Operations on Polyhedral Solids. Technical
Report 87-875, Cornell University, Computer Science
Department, Ithaca, New York.

Hu, C.-Y., Patrikalakis, N. M., & Ye, X. (1996). Robust
interval solid modeling, Part II: boundary evaluation.
Computer Aided Design, 28, pp. 819–830.

Keyser, J., Culver, T., Foskey, M., Krishnan, S., &
Manocha, D. (2002). ESOLID-A System for Exact
Boundary Evaluation. In Proc. 7th ACM Symposium
on Solid Modeling and Applications Saarbrücken, Ger-
many.

Koelman, H. J., Horváth, I., & Aalbers, A. (2001). Hybrid
Representation of the Shape of Ship Hulls. International
Shipbuilding Progress, 48(3), pp. 247–269.

Krishnan, S., Manocha, D., Gopi, M., Culver, T., & Keyser,
J. (2001). BOOLE: A Boundary Evaluation System for
Boolean Combinations of Sculptured Solids. Interna-
tional Journal of Computational Geometry and Applica-
tions, 11(1), pp. 105–144.

10 Herbert J. Koelman

Lee, K.-Y., Lee, S.-U., Cho, D.-Y., Roh, M.-I., & Kang, S.-
C. (2003). An innovative compartment modeling and
ship calculation system. In Proc. 8th International Ma-
rine Design Conference Athens Greece.

Liming, R. A. (1979). Mathematics for Computer Graphics.
Fallbrook, CA: Aero Publishers.

Mäntylä, M. J. (1986). Boolean Operations of 2-Manifolds
through Vertex Neighborhood Classification. ACM
Transactions on Graphics, 5(1), pp. 1–29.

Mäntylä, M. J. (1988). An Introduction to Solid Modeling.
Rockville, MD, USA: Computer Science Press.

Mäntylä, M. J. & Sulonen, R. (1982). GWB: A solid mod-
eler with Euler operators. IEEE Comput. Graph. Appl.,
2(5), pp. 17–31.

Mäntylä, M. J. & Tamminen, M. (1983). Localized set op-
erations for solid modeling. Computer Graphics, 3(17),
pp. 279–288.

Requicha, A. A. G. (1980). Representations of rigid solids:
Theory, methods, and systems. ACM Comput. Surv., 12,
pp. 437–464.

Requicha, A. A. G. & Voelcker, H. B. (1984). Boolean
operations in solid modelling: boundary evaluation and
merging algorithms. Report, College Engrg. Appl. Sci.,
Univ. Rochester, Rochester, NY.

Segal, M. & Sequin, C. H. (1988). Partitioning polyhedral
objects into nonintersecting parts. IEEE Comput. Graph.
Appl., 8(1), pp. 53–67.

Toriya, H., Takamura, T., Satoh, T., & Chiyokura, H.
(1991). Boolean operations for solids with free-form
surfaces through polyhedral approximation. Visual
Computer, 7, pp. 87–96.

Tsuzuki, M. & Shimada, M. (2003). Geometric classifica-
tion tests using interval arithmetic in b-rep solid mod-
elling. J. Braz. Soc. Mech. Sci. & Eng., 25(4).

REFLECTIONS ON THE IMPLEMENTATION OF BOOLEAN OPERATIONS WITH POLYHEDRAL SOLIDS 11

